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Abstract

This study is motivated by our recent study (Elishako�, I., Rollot, O., 1999. New closed-form solutions for buckling

of a variable sti�ness column by mathematica, Journal of Sound and Vibration 224, 172±182), which presented new

closed-form solutions for buckling of columns with variable sti�ness. The column was simply supported at both ends. In

the present study, we rederive, in other means, the same solution, and, moreover, obtain new solutions for two other

sets of the boundary conditions by posing an inverse buckling problem. It is shown that the buckling load is dependent

upon a single sti�ness coe�cient. By suitable choice of this parameter, the buckling load can be made arbitrarily

large. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Buckling; Inverse problems; Bernoulli±Euler columns

1. Introduction

The exact solutions for buckling load of uniform beams are treated in almost any textbook on mechanics
of solids. Exact solutions for non-uniform columns is the subject of several works (see, e.g. the textbook by
Timoshenko and Gere (1961)). These solutions are derived in terms of Bessel or Lommel functions, or some
other, elementary or transcendental functions. As far as the closed-form solutions are concerned, the results
are much more restricted. All existing closed-form solutions are apparently listed, along with new solutions,
in the recent study by Elishako� and Rollot (1999).

This study is devoted to obtaining additional closed-form solutions, which are posed as inverse prob-
lems. Namely, the formulation of the problem is as follows: Find the polynomial distribution of the Young
modulus E(x) of an inhomogeneous column of the uniform cross-section with speci®ed boundary condi-
tions, so that the buckling mode will be a pre-selected polynomial function. It turns out that this seemingly
simple formulation allows one to derive new closed-form solutions. The obtained solutions appear to be of
much importance once the technologies are available to construct columns with given variation of modulus
of elasticity, any pre-selected buckling load can then be achieved for the appropriate design of the
structure.
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2. Formulation of the problem

The di�erential equation that governs the buckling of the column under axial load P, reads

d2

dx2
D�x� d

2w
dx2

� �
� P

d2w
dx2
� 0; �1�

where w(x) is the transverse displacement, D�x� � E�x�I�x� is the sti�ness, E(x) is the modulus of elasticity,
I(x) is the moment of inertia, x is the axial coordinate. We consider three sets of boundary conditions. For
the column that is simply supported at its both ends, the simplest polynomial that satis®es the boundary
conditions at x � 0 and x � L, with L is the length of the column, reads

w�n� � nÿ 2n3 � n4; n � x=L: �2�
We pose the following question: Is there a column with polynomial variation of E(n) that possesses the
function in Eq. (2) as its fundamental buckling mode? Indeed, if the sought solution exists, it corresponds to
the fundamental buckling load since w(n) in Eq. (2) does not have internal nodes. This problem di�ers from
the direct buckling problem, which pre-supposes the knowledge of the sti�ness D and requires the deter-
mination of the mode w(x) and the buckling load P. Here, we are looking for the cause, i.e., the distribution
of the sti�ness while knowing the e�ect, by the buckling mode.

We are looking for the sti�ness D(n) represented as follows:

D�n� � b0 � b1n� b2n
2; �3�

where b0, b1 and b2 are sought constants. The inverse problems may have no solution, multiple solutions or
unique solution. It turns out that in the case under study, a unique solution exists for reconstructing the
column, that possesses the function in Eq. (2) as its buckling mode, once a single parameter, namely b2 is
speci®ed. We now consider the di�erent sets of boundary conditions.

3. Column simply supported at its both ends

Utilization of the non-dimensional axial coordinate n, de®ned in Eq. (2) reduces the governing Eq. (1) to

d2

dn2
D�n� d

2w

dn2

� �
� PL2 d2w

dn2
� 0: �4�

With the buckling mode postulated in Eq. (2), we have for the term in Eq. (4),

PL2 d2w

dn2
� PL2

ÿÿ 12n� 12n2
�
; �5�

whereas the ®rst di�erential expression in Eq. (4) reads

d2

dn2
D�n� d

2w

dn2

� �
� ÿ12 2 b1�

� ÿ b0� � 6n b2� ÿ b1� ÿ 12b2n
2
�
: �6�

The sum of expressions on the right-hand sides in Eqs. (5) and (6) must vanish, due to Eq. (4). Since the
above sum must equal to zero identically, for any value of n, we get following expressions:

2 b1� ÿ b0� � 0; �7�

ÿ72 b2� ÿ b1� ÿ 12PL2 � 0; �8�
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144b2 � 12PL2 � 0: �9�
Solution of Eq. (9) yields

P � ÿ12
b2

L2
: �10�

In order that the load P remains compressive, it must be positive. We conclude, therefore, that the coef-
®cient b2 must be negative. Eqs. (7) and (8) lead, with Eq. (10) taken into account, to

b0 � b1 � ÿb2: �11�
Thus, the sti�ness is de®ned up to the coe�cient b2:

D�n� � ÿÿ 1ÿ n� n2
�
b2: �12�

We have already established that b2 must take a negative value. Hence, Eq. (12) can be rewritten as

D�n� � 1
ÿ � nÿ n2

�
b2j j: �13�

This function is in agreement with the physical realizability condition, namely, with the requirement of
positivity of the the function D(n) in the interval [0;1]. We thus have found the function D(n) that corre-
sponds to the postulated buckling mode in Eq. (2). As is seen, the solution of the posed problem is a unique
one in the class of polynomially varying sti�nesses once b2 is speci®ed. Note that Eq. (10) coincides with Eq.
(56) in the paper by Elishako� and Rollot (1999). It pertains to the column that is simply supported at its
both ends. We will show that Eq. (10) is valid for two other sets of boundary conditions. Note that using
the Bubnov±Galerkin method to the above nonuniform column, with the comparison function w�n� �
sin�pn�, the exact mode shape of the associated uniform column yields the buckling load �3� 7p2�=
�b2=6L2�, constituting 0.12% error in comparison with Eq. (10).

4. Column clamped at its both ends

The boundary conditions,

w � 0;
dw
dn
� 0; at n � 0; n � 1; �14�

are satis®ed for the following polynomial function:

w�n� � n2 ÿ 2n3 � n4: �15�
We are interested in establishing if this polynomial function may serve as a buckling shape of any inhomo-
geneous column. The expression for PL2w00 reads, with primes denoting di�erentiation with respect to n:

PL2w00 � PL2 2
ÿ ÿ 12n� 12n2

�
; �16�

whereas the expression for Dw00� �00 is

Dw00
� �00

� 2 2b2� ÿ 12b1 � 12b0� � 6�ÿ12b2 � 12b1�n� 144b2n
2: �17�

We demand the sum of the expressions in Eqs. (16) and (17) to vanish for any n. This requirement leads to
the following three equations:

2 2b2� ÿ 12b1 � 12b0� � 2PL2 � 0; �18�

6�ÿ12b2 � 12b1� ÿ 12PL2 � 0; �19�
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144b2 � 12PL2 � 0: �20�
From the latter equation (20), we get the buckling load,

P � ÿ12
b2

L2
; �21�

which, remarkably, coincides with Eq. (10). Eqs. (18) and (19) lead to

b0 � ÿb2=6; b1 � ÿb2: �22�
Hence, we obtain the sought variation of the sti�ness,

D�n� � 1
6

ÿ � nÿ n2
�

b2j j; �23�
which takes a positive value throughout the columnÕs axis, n 2 �0; 1�.

5. Column simply supported at one end and clamped at the other

The boundary conditions read

w � 0; D�n�d
2w

dn2
� 0; at n � 0;

w � 0;
dw
dn
� 0; at n � 1:

�24�

The boundary conditions are satis®ed by the following polynomial function:

w�n� � nÿ 3n3 � 2n4: �25�
Substitution of this expression into the governing di�erential equation, in conjunction with postulated
expression for the sti�ness results in

2�� ÿ 18b1 � 24b0� � 6� ÿ 18b2 � 24b1�n� 288b2n
2
�� PL2�ÿ18n� 24n2� � 0: �26�

Since Eq. (26) is valid for any n, we get following three equations:

ÿ18b1 � 24b0 � 0 for n0; �27�

6�ÿ18b2 � 24b1� ÿ 18PL2 � 0 for n1; �28�

288b2 � 24PL2 � 0 for n2: �29�
We arrive at three equations for four unknowns: b0, b1, b2 and P. We choose one of the parameters to be
arbitrary, namely b2. Eq. (29) yields the same buckling load as in Eqs. (10) and (21):

P � ÿ12
b2

L2
: �30�

Eqs. (27)±(29) yield the following interrelation between the coe�cients describing the sti�ness variation:

b0 � ÿ 9
16

b2; b1 � ÿ3
4
b2: �31�

Substituting into Eq. (3) results in the variation of the sti�ness:

D�n� � 9
16

ÿ � 3
4
nÿ n2

�jb2j; �32�
which is a positive function within the length of the column. The functions D(n), for all three cases, are
depicted in Figs. 1±3.
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6. Discussion

The following conclusions appear to be relevant:
(1) Inverse buckling problems with postulated polynomial buckling modes, as given in Eq. (2), Eq. (15)

or Eq. (25) for corresponding boundary conditions have closed-form solutions; namely, the variations of
sti�ness corresponding to the above mode shapes are given in Eqs. (13), (23) and (32), respectively.

(2) For three sets of boundary conditions, the fundamental buckling load is given by the same expression
(Eqs. (10), (21) and (30)). This conclusion may appear to be a paradoxical one at ®rst glance. To resolve it,

Fig. 1. Variation of D�n�=jb2j; n 2 �0; 1�, for the column that is simply supported at both its ends.

Fig. 2. Variation of D�n�=jb2j; n 2 �0; 1�, for the column that is clamped at both its ends.
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let us consider the corresponding case of homogeneous and uniform columns. The fundamental buckling
loads are

PSS � p2D1

L2
; PCC � 4p2D2

L2
; PSC � 4:4932D3

L2
� 2p2D3

L2
; �33�

where D1 is the sti�ness of the column that is simply supported at its both ends, D2 corresponds to the
column that is clamped at its both ends; D3 is associated with the column that is simply supported at x � 0
and clamped x � L. These three columns possess the same cross-sections and have the same lengths. Now, if

D1 � 4D2 � 2D3; �34�
then all three columns have coalescing buckling loads. This suggests that columns with di�erent sti�nesses,
if they are under di�erent boundary conditions, but have the same lengths and cross-sections, may share the
same fundamental buckling load. The same phenomenon takes place in the case of our study. The columns
with three di�erent sets of boundary conditions share the same fundamental buckling load, and their
moduli of elasticity are di�erent.

Still, it appears to be intriguing that the search of the solution of inverse buckling problem in the class of
polynomial functions lead to the coincidence of buckling loads for simply supported±simply supported,
clamped±clamped and simply supported±clamped boundary conditions. Here, we reported the case when
the fundamental buckling loads are shared by columns under di�erent boundary conditions (see also re-
lated studies Gottlieb, 1989 and Gladwell and Morassi, 1995, for vibration problems).

(3) To compare the results for the buckling loads, let us calculate the average sti�ness in each of three
cases. Average sti�ness is de®ned as

Dav �
Z 1

0

D�n�dn: �35�

Thus, for a simply supported column,

Dav;SS � 7
6

b2j j: �36�

Fig. 3. Variation of D�n�=jb2j; n 2 �0; 1�, for the column that is simply supported at one end and clamped at the other.
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For a clamped column,

Dav;CC � 1
3

b2j j: �37�
For a column that is simply supported at one end and clamped at the other,

Dav;SC � 29
48

b2j j: �38�
Thus, the buckling loads can be put in the following forms, by ®rst expressing b2j j via Dav in Eqs. (36)±(38):

PSS � 12 b2j j
L2
� 72

7

Dav

L2
; �39�

PCC � 12 b2j j
L2
� 36

Dav

L2
; �40�

PSC � 12 b2j j
L2
� 576

29

Dav

L2
: �41�

If the average sti�nesses of these columns are chosen to be the same, then the buckling loads of the in-
homogeneous columns are in the proportion

72
7

: 36 : 576
29

�42�
or 1:3.5:1.93, versus the corresponding proportion 1:4:(�2) for the uniform columns.

(4) For uniform columns, the polynomial expressions of the buckling mode are usually utilized to fa-
cilitate the approximate solutions, via the Bubnov±Galerkin, Rayleigh, or Rayleigh±Ritz methods. For
example, Chajes (1974) uses the function w�x� � xL3 ÿ 3x3L� 2x4, as a comparison function in the Bubnov±
Galerkin method for the column that is simply supported at x � 0 and clamped at x � L. It is interesting
that the same polynomial function (coincident with Eq. (25)) turned out to be an exact buckling mode of
the inhomogeneous column.

Likewise, in his book of problems, Volmir (1984) poses a question of using the RayleighÕs method as well
as the Bubnov±Galerkin method for the approximate estimation of the buckling load of an uniform col-
umn, simply supported at its both ends, by utilizing the trial function w�x� � xL3 ÿ 2x3L� x4. In our case,
the same buckling mode (coincident with Eq. (2)) serves as an exact expression of the inhomogeneous
column.

(5) A question arises on the generality of the proposed method. In order that the method be acceptable, it
should lead to the positive buckling load, corresponding to the case of a compressive force, and modulus of
elasticity that is a positive function. The formulation of some general conditions upon ful®llment of which
the problem is amenable to a solution is of interest.

(6) The buckling loads turn out to depend upon only a single coe�cient b2, once the function of modulus
variation is obtained. By suitable choice of b2, the buckling load can be made arbitrarily large. This
conclusion is valid within the context of elastic buckling that was pre-supposed in this study.

(7) The solution of the buckling problems of uniform columns leads to irrational values of the buckling
loads in known cases; for example, the buckling load of the simply supported uniform column is written in
terms of p2 (Eq. (33)). So is the buckling load, found by Euler (1757) in the case of the variable sti�ness
column, where the buckling load is p2 D0=L2� �a2 a� b� �2 for the column with the sti�ness D�n� �
D0 a� bn� �4 (see also works by Dinnik, 1932, 1955). Here, in the case of inhomogeneous and/or non-uniform
column, the solution turns out to be in terms of rational numbers. Other solutions of this kind (namely by
Duncan, 1937) are reported by Elishako� and Rollot (1999). It must be stressed that this conclusion is true
for special cases herein discussed, and it may be inapplicable for other cases.
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(8) In this study, we assume D(n) to be the polynomial, which ®ts the solution. The natural question
arises: Can we use other functions, such as sin or cos, or some other special functions instead of polyno-
mials? It appears that this question ought to be investigated in the future studies.
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