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Abstract

This study is motivated by our recent study (Elishakoff, I., Rollot, O., 1999. New closed-form solutions for buckling
of a variable stiffness column by mathematica, Journal of Sound and Vibration 224, 172-182), which presented new
closed-form solutions for buckling of columns with variable stiffness. The column was simply supported at both ends. In
the present study, we rederive, in other means, the same solution, and, moreover, obtain new solutions for two other
sets of the boundary conditions by posing an inverse buckling problem. It is shown that the buckling load is dependent
upon a single stiffness coefficient. By suitable choice of this parameter, the buckling load can be made arbitrarily
large. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The exact solutions for buckling load of uniform beams are treated in almost any textbook on mechanics
of solids. Exact solutions for non-uniform columns is the subject of several works (see, e.g. the textbook by
Timoshenko and Gere (1961)). These solutions are derived in terms of Bessel or Lommel functions, or some
other, elementary or transcendental functions. As far as the closed-form solutions are concerned, the results
are much more restricted. All existing closed-form solutions are apparently listed, along with new solutions,
in the recent study by Elishakoff and Rollot (1999).

This study is devoted to obtaining additional closed-form solutions, which are posed as inverse prob-
lems. Namely, the formulation of the problem is as follows: Find the polynomial distribution of the Young
modulus E(x) of an inhomogeneous column of the uniform cross-section with specified boundary condi-
tions, so that the buckling mode will be a pre-selected polynomial function. It turns out that this seemingly
simple formulation allows one to derive new closed-form solutions. The obtained solutions appear to be of
much importance once the technologies are available to construct columns with given variation of modulus
of elasticity, any pre-selected buckling load can then be achieved for the appropriate design of the
structure.
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2. Formulation of the problem

The differential equation that governs the buckling of the column under axial load P, reads

d? d*w d*w
o {D“)@] i

where w(x) is the transverse displacement, D(x) = E(x)I(x) is the stiffness, E(x) is the modulus of elasticity,
I(x) is the moment of inertia, x is the axial coordinate. We consider three sets of boundary conditions. For
the column that is simply supported at its both ends, the simplest polynomial that satisfies the boundary
conditions at x = 0 and x = L, with L is the length of the column, reads

b =¢-28+¢,  e=x/L 2)

We pose the following question: Is there a column with polynomial variation of E(&) that possesses the
function in Eq. (2) as its fundamental buckling mode? Indeed, if the sought solution exists, it corresponds to
the fundamental buckling load since y/(£) in Eq. (2) does not have internal nodes. This problem differs from
the direct buckling problem, which pre-supposes the knowledge of the stiffness D and requires the deter-
mination of the mode w(x) and the buckling load P. Here, we are looking for the cause, i.e., the distribution
of the stiffness while knowing the effect, by the buckling mode.

We are looking for the stiffness D(&) represented as follows:

D(&) = by + by & + b, E, (3)

where by, by and b, are sought constants. The inverse problems may have no solution, multiple solutions or
unique solution. It turns out that in the case under study, a unique solution exists for reconstructing the
column, that possesses the function in Eq. (2) as its buckling mode, once a single parameter, namely b, is
specified. We now consider the different sets of boundary conditions.

=0, (1)

3. Column simply supported at its both ends

Utilization of the non-dimensional axial coordinate &, defined in Eq. (2) reduces the governing Eq. (1) to

d? d*y d*y

— |D(§)— | + PL*—5 = 0. 4

d& { © déz} dé? @
With the buckling mode postulated in Eq. (2), we have for the term in Eq. (4),

X 2
PLF_PL(—125+125), (5)
S

whereas the first differential expression in Eq. (4) reads

d’ d’ .

d_éz {D(é)d—flq = —12[2(by — by) + 6&(by — by) — 12b2§2]. (6)

The sum of expressions on the right-hand sides in Egs. (5) and (6) must vanish, due to Eq. (4). Since the
above sum must equal to zero identically, for any value of &, we get following expressions:

2(by — by) =0, (7)
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144b, 4+ 12PL* = 0. 9)
Solution of Eq. (9) yields
b
P= 712L—§. (10)

In order that the load P remains compressive, it must be positive. We conclude, therefore, that the coef-
ficient b, must be negative. Egs. (7) and (8) lead, with Eq. (10) taken into account, to

by = by = —bs. (11)
Thus, the stiffness is defined up to the coefficient b,:

D(&) = (—1-¢+ )b, (12)
We have already established that b, must take a negative value. Hence, Eq. (12) can be rewritten as

D(&) = (1+¢=8)bal- (13)

This function is in agreement with the physical realizability condition, namely, with the requirement of
positivity of the the function D(&) in the interval [0;1]. We thus have found the function D(&) that corre-
sponds to the postulated buckling mode in Eq. (2). As is seen, the solution of the posed problem is a unique
one in the class of polynomially varying stiffnesses once b, is specified. Note that Eq. (10) coincides with Eq.
(56) in the paper by Elishakoff and Rollot (1999). It pertains to the column that is simply supported at its
both ends. We will show that Eq. (10) is valid for two other sets of boundary conditions. Note that using
the Bubnov-Galerkin method to the above nonuniform column, with the comparison function y(¢) =
sin(n¢), the exact mode shape of the associated uniform column yields the buckling load (3 + 7n?)/
(by/6L%), constituting 0.12% error in comparison with Eq. (10).

4. Column clamped at its both ends

The boundary conditions,
dw

WZO? d_é_()’ at£:O7 621, (14)
are satisfied for the following polynomial function:
Yo =¢-28+¢& (15)

We are interested in establishing if this polynomial function may serve as a buckling shape of any inhomo-
geneous column. The expression for PL*y" reads, with primes denoting differentiation with respect to &:

PLY" = PL* (2 — 12¢& + 12&%), (16)
whereas the expression for (Dy")" is

(Du")" = 225, — 126, + 1260) + 6(~ 1265 + 1251)¢ + 1445, (17)

We demand the sum of the expressions in Egs. (16) and (17) to vanish for any &. This requirement leads to
the following three equations:

2(2by — 12b; 4 12by) + 2PL* = 0, (18)

6(—12b, + 12b;) — 12PL* = 0, (19)
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144b, 4+ 12PL* = 0. (20)
From the latter equation (20), we get the buckling load,
by
'
which, remarkably, coincides with Eq. (10). Egs. (18) and (19) lead to
by = —by/6, by = —b;. (22)
Hence, we obtain the sought variation of the stiffness,
D(&) = (4 +¢—&)bal, (23)

which takes a positive value throughout the column’s axis, ¢ € [0; 1].

P=-12

5. Column simply supported at one end and clamped at the other

The boundary conditions read

dw_
) ¢ (24)

w
— = =1.
az 0, at¢

The boundary conditions are satisfied by the following polynomial function:
Y(&) =¢—38 +2¢ (25)

Substitution of this expression into the governing differential equation, in conjunction with postulated
expression for the stiffness results in

[2( — 18Dy + 24b) + 6( — 18y + 24b,) & + 288b,E°| + PL*(—18¢ + 24&%) = 0. (26)
Since Eq. (26) is valid for any &, we get following three equations:

—18by +24by =0 for &, (27)

6(—18b, 4 24b;) — 18PL> =0 for &', (28)

288h, +24PL> = 0 for & (29)

We arrive at three equations for four unknowns: by, b, b, and P. We choose one of the parameters to be
arbitrary, namely b,. Eq. (29) yields the same buckling load as in Egs. (10) and (21):

by

Egs. (27)—(29) yield the following interrelation between the coefficients describing the stiffness variation:
by = —gby, by = —3b,. (31)

Substituting into Eq. (3) results in the variation of the stiffness:
D(&) = (&+3 - &) b, (32)

which is a positive function within the length of the column. The functions D(¢), for all three cases, are
depicted in Figs. 1-3.
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Fig. 1. Variation of D(&)/|b,|, ¢ € [0; 1], for the column that is simply supported at both its ends.
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Fig. 2. Variation of D(&)/|b,|, ¢ € [0;1], for the column that is clamped at both its ends.

6. Discussion

The following conclusions appear to be relevant:

(1) Inverse buckling problems with postulated polynomial buckling modes, as given in Eq. (2), Eq. (15)
or Eq. (25) for corresponding boundary conditions have closed-form solutions; namely, the variations of
stiffness corresponding to the above mode shapes are given in Eqs. (13), (23) and (32), respectively.

(2) For three sets of boundary conditions, the fundamental buckling load is given by the same expression
(Egs. (10), (21) and (30)). This conclusion may appear to be a paradoxical one at first glance. To resolve it,
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Fig. 3. Variation of D(&)/|b,|, ¢ € [0;1], for the column that is simply supported at one end and clamped at the other.

let us consider the corresponding case of homogeneous and uniform columns. The fundamental buckling

loads are

TCle 4TE2D2 44932D3 - 2T52D3
R cc="p . Be=Tp—cTpo

where D is the stiffness of the column that is simply supported at its both ends, D, corresponds to the

column that is clamped at its both ends; Djs is associated with the column that is simply supported at x = 0
and clamped x = L. These three columns possess the same cross-sections and have the same lengths. Now, if

D1 = 4D2 ~ 2D3, (34)

Pss = (33)

then all three columns have coalescing buckling loads. This suggests that columns with different stiffnesses,
if they are under different boundary conditions, but have the same lengths and cross-sections, may share the
same fundamental buckling load. The same phenomenon takes place in the case of our study. The columns
with three different sets of boundary conditions share the same fundamental buckling load, and their
moduli of elasticity are different.

Still, it appears to be intriguing that the search of the solution of inverse buckling problem in the class of
polynomial functions lead to the coincidence of buckling loads for simply supported—simply supported,
clamped—clamped and simply supported—clamped boundary conditions. Here, we reported the case when
the fundamental buckling loads are shared by columns under different boundary conditions (see also re-
lated studies Gottlieb, 1989 and Gladwell and Morassi, 1995, for vibration problems).

(3) To compare the results for the buckling loads, let us calculate the average stiffness in each of three
cases. Average stiffness is defined as

Thus, for a simply supported column,

Dayss = bl (36)
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For a clamped column,
Dyycc = bl (37)
For a column that is simply supported at one end and clamped at the other,
Daysc = 2|ba|. (38)

Thus, the buckling loads can be put in the following forms, by first expressing |b,| via D,, in Egs. (36)—(38):

12|k 72D,
Ps=-—f == 75 (39)
12|b,| Dy
Poc =~5 =365, (40)
_12|by| 576 D,
Be=—"=% 1o “0)

If the average stiffnesses of these columns are chosen to be the same, then the buckling loads of the in-
homogeneous columns are in the proportion

£:36:% (42)

or 1:3.5:1.93, versus the corresponding proportion 1:4:(=2) for the uniform columns.

(4) For uniform columns, the polynomial expressions of the buckling mode are usually utilized to fa-
cilitate the approximate solutions, via the Bubnov—Galerkin, Rayleigh, or Rayleigh-Ritz methods. For
example, Chajes (1974) uses the function w(x) = xL> — 3x°L + 2x*, as a comparison function in the Bubnov—
Galerkin method for the column that is simply supported at x = 0 and clamped at x = L. It is interesting
that the same polynomial function (coincident with Eq. (25)) turned out to be an exact buckling mode of
the inhomogeneous column.

Likewise, in his book of problems, Volmir (1984) poses a question of using the Rayleigh’s method as well
as the Bubnov—Galerkin method for the approximate estimation of the buckling load of an uniform col-
umn, simply supported at its both ends, by utilizing the trial function w(x) = xL* — 2x*L + x*. In our case,
the same buckling mode (coincident with Eq. (2)) serves as an exact expression of the inhomogenecous
column.

(5) A question arises on the generality of the proposed method. In order that the method be acceptable, it
should lead to the positive buckling load, corresponding to the case of a compressive force, and modulus of
elasticity that is a positive function. The formulation of some general conditions upon fulfillment of which
the problem is amenable to a solution is of interest.

(6) The buckling loads turn out to depend upon only a single coefficient b,, once the function of modulus
variation is obtained. By suitable choice of b,, the buckling load can be made arbitrarily large. This
conclusion is valid within the context of elastic buckling that was pre-supposed in this study.

(7) The solution of the buckling problems of uniform columns leads to irrational values of the buckling
loads in known cases; for example, the buckling load of the simply supported uniform column is written in
terms of m? (Eq. (33)). So is the buckling load, found by Euler (1757) in the case of the variable stiffness
column, where the buckling load is n*(Dy/L?)a*(a+b)’ for the column with the stiffness D(&) =
Do(a + bé)4 (see also works by Dinnik, 1932, 1955). Here, in the case of inhomogeneous and/or non-uniform
column, the solution turns out to be in terms of rational numbers. Other solutions of this kind (namely by
Duncan, 1937) are reported by Elishakoff and Rollot (1999). It must be stressed that this conclusion is true
for special cases herein discussed, and it may be inapplicable for other cases.
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(8) In this study, we assume D(&) to be the polynomial, which fits the solution. The natural question
arises: Can we use other functions, such as sin or cos, or some other special functions instead of polyno-
mials? It appears that this question ought to be investigated in the future studies.
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